

Aqua Logger FLOW MODBUS	Instrukcja	PM Ecology Sp. z o.o.
	04.11.2021	

Przepływomierz ścieków i wód opadowych

Aqua Logger Flow Modbus

Instrukcja obsługi

Historia zmian

Wersja	Data	Autor	Opis zmian
1.0	22.07.2019	Katarzyna Zwolak	Wersja oryginalna.
1.1	12.08.2019	Katarzyna Zwolak	Uaktualniono zdjęcia, schematy, rysunki.
1.2	04.09.2019	Katarzyna Zwolak	Uaktualniono opis funkcjonalności systemu online.
1.3	16.01.2020	Katarzyna Zwolak	Dodano opis funkcjonalności oraz zdjęcia przedstawiające możliwości montażowe stacji pomiarowej
1.4	04.11.2021	Katarzyna Zwolak	Aktualizacja danych adresowych.

Szanowni Państwo,

Dziękujemy za zakup *Przepływomierza ścieków i wód opadowych Aqua Logger Flow Modbus*. Niniejsze dokumentacja została opracowana w celu przekazania najistotniejszych informacji dotyczących sposobu instalacji oraz prawidłowego użytkowania stacji pomiarowej. Prosimy o dokładne zapoznanie się z tym dokumentem aby móc w prawidłowy sposób wykorzystać wszystkie funkcje urządzenia.

W przypadku problemów z obsługą lub użytkowaniem stacji producent zapewnia pełne wsparcie techniczne. Jeśli jakikolwiek fragment opracowania jest niejasny lub zawiera niewystarczająca ilość informacji, prosimy o bezpośredni kontakt z firmą PM Ecology.

PM Ecology Sp. z o.o. Kielnieńska 136 80-299 Gdańsk

info@pmecology.com +48 58 500 80 07 www.pmecology.com

Spis treści

1.	Wstęp	5
	1.1. Zasady bezpieczeństwa	5
	1.2. Zakres dostawy	5
2.	Charakterystyka stacji pomiarowej	6
	2.1. Zasada działania stacji pomiarowej	6
	2.2. Parametry techniczne	6
3.	Instalacja stacji pomiarowej	8
	3.1. Wybór miejsca i sposobu montażu	8
	3.2. Pomiary	14
4.	Pierwsze uruchomienie	15
	4.1. Konfiguracja sondy poziomu za pomocą aplikacji SmartBlue	15
	4.2. Podłączenie stacji pomiarowej	21
	4.3. Konfiguracja sond pomiarowych w aplikacji online	22
	4.3.1. Konfiguracja sondy poziomu	23
	4.3.2. Konfiguracja sondy prędkości	25
5.	Analiza danych pomiarowych	36

1. Wstęp

Zapoznanie się z niniejszym opracowaniem wraz z zawartymi w nim zasadami bezpieczeństwa stanowi podstawę bezpiecznego użytkowania oraz funkcjonowania stacji pomiarowej. Zaznajomienie się ze zrozumieniem z informacjami zamieszczonymi w dokumentacji pozwoli uniknąć większości problemów związanych z funkcjonowaniem urządzeń jak również zwiększy jakość i reprezentatywność prowadzonych pomiarów. Pozwoli także uniknąć spowodowania nieumyślnych uszkodzeń, a tym samym utraty praw gwarancyjnych wynikającej z niewłaściwego użytkowania.

1.1. Zasady bezpieczeństwa

W celu bezpiecznego, zgodnego z przeznaczeniem, użytkowania stacji pomiarowej *Aqua Logger Flow Modbus* należy szczegółowo zapoznać się z zasadami bezpieczeństwa. Niestosowanie się do poniższych zasad może skutkować nieprawidłowym działaniem sprzętu lub przyczynić się do urazów.

- Montaż oraz uruchomienie muszą być prowadzone przez wykwalifikowany personel lub, po przeszkoleniu, osoby uprawnione.
- Nieautoryzowane naprawy i inne modyfikacje są zabronione. Urządzenia zostały przetestowane i zaprojektowane do użytku zewnętrznego. Każda modyfikacja sprzętowa lub użytkowanie stacji niezgodnie z jej przeznaczeniem, może prowadzić do niewłaściwego działania lub do uszkodzenia któregoś urządzenia.
- Należy przestrzegać zaleceń dotyczących warunków pracy. Użytkowanie stacji pomiarowej jest dozwolone tylko w zakresie zgodnym z parametrami technicznymi.
- Po zakończonym okresie użytkowania, urządzenie należy przekazać do punktu zajmującego się utylizacją urządzeń elektrycznych i elektronicznych.

1.2. Zakres dostawy

- ✓ Radarowa sonda poziomu FMR20 Modbus RS485 Endress+Hauser
- ✓ Radarowa sonda prędkości RSS-2-300W GEOLUX
- ✓ Dedykowany rejestrator danych Aqua Logger PM Ecology z wbudowaną anteną GSM/GPRS
- ✓ Akumulator 12V 12-55Ah
- ✓ Uchwyty montażowe ze stali nierdzewnej
- Dokumentacja techniczno-ruchowa

2. Charakterystyka stacji pomiarowej

Stacja pomiarowa *Aqua Logger Flow Modbus* jest dedykowana do pomiaru objętościowego natężenia przepływu ścieku lub wody. Do tego celu wykorzystywane są dwie sondy radarowe. Pierwsza z nich służy do pomiaru poziomu zwierciadła medium, a druga do pomiaru prędkości z jaką porusza się ściek lub woda. Zmierzone wartości prędkości przepływu oraz poziomu zwierciadła cieczy, przy uwzględnieniu rzeczywistego kształtu kanału, umożliwiają obliczenie objętościowego natężenia przepływu. Rejestrator danych i modem GSM/GPRS zostały zintegrowane w kompaktowej, wytrzymałej obudowie.

2.1. Zasada działania stacji pomiarowej

Zasada działania czujnika poziomu opiera się na pomiarze czasu przelotu emitowanych fal elektromagnetycznych nadawanych przez antenę i odbijanych od powierzchni cieczy na skutek zmiany impedancji falowej. Czas przelotu odbitej fali jest wprost proporcjonalny do odległości od lustra cieczy. Znajomość przekroju kanału i zmierzonego czasu pozwala na obliczenie poziomu ścieku. Pomiar wykonywany jest metodą bezkontaktową, dzięki czemu instalacja przebiega w sposób prosty i nie jest wymagane montowanie jakichkolwiek elementów od strony wody lub ścieków.

Pomiar prędkości przepływu dokonywany jest również bezkontaktowo, za pomocą technologii radarowej. Prędkość powierzchniowa mierzona jest przy wykorzystaniu promieniowania elektromagnetycznego emitowanego w kierunku powierzchni cieczy pod kątem w przedziale od 30° do 60°. Aby pomiar był możliwy, powierzchnia przepływu musi być zafalowana. Urządzenie jest w stanie dokonywać pomiaru nawet przy falach o wysokości 1mm. Część emitowanego promieniowania odbija się od fal na powierzchni cieczy i trafia z powrotem do czujnika. Ze względu na prędkość przepływu oraz efekt Dopplera, częstotliwość promieniowania powracającego ulega zmianie w stosunku do częstotliwości emitowanej. Następnie, za pomocą zależności empirycznych, różnica ta jest przekształcana w wartość predkości powierzchniowej.

Typ transmisji danych	GSM / GPRS; RS232, RS485 (opcja)
	obsługiwane częstotliwości: 850/900/1800/1900 MHz
Zasilanie urzadzenia	Akumulator 12V 12-55Ah (w zależności od oczekiwanej przez użytkownika częstotliwości
د 	pomiarów i wysyłania danych)
Czas trwania pojedynczego pomiaru przepływu	25 - 60 sekund w zależności od warunków przepływu
Czas aktywności modemu przy wysyłce danych	18 - 22 sekund typowo
Częstotliwość pomiarów	definiowana przez użytkownika w zakresie 1 min - 24 godziny
Częstotliwość wysyłania danych	definiowana przez użytkownika w zakresie 1 min - 24 godziny
Rejestrowane parametry serwisowe	temperatura elektroniki, napięcie zasilania, siła sygnału GSM, czas aktywności modemu przy ostatniej transmisji danych, stany alarmowe
Alarmy SMS	 możliwe do ustawienia dla poziomu, prędkości, natężenia przepływu oraz wybranych parametrów serwisowych

2.2. Parametry techniczne

	 możliwość ustawienia niezależnych częstotliwości wykonywania pomiarów oraz wysyłania danych w zależności od zdefiniowanych progów alarmowych wybranych parametrów
Obudowa rejestratora	poliester 220x120x90mm, wersja szczelności IP67
Temperatura pracy rejestratora	-40+60°C
Pamięć wewnętrzna	o pojemności 200 000 rekordów
Stopień ochrony sond pomiarowych	IP68

Radarowa sonda poziomu FMR20 Modbus RS485 ENDRESS+HAUSER

Zakres pomiaru poziomu	0 - 10m
Dokładność pomiaru poziomu	± 2mm
Częstotliwość robocza i moc transmisji	pasmo K (26GHz), w odległości 1m: <12 nW/cm ² , w odległości 5m: <0,4 nW/cm ²
Kąt wiązki pomiaru poziomu	12°
Konfiguracja sondy poziomu	poprzez dowolne urządzenie z transmisją Bluetooth z systemem Android lub Mac OS X
Wyjście cyfrowe	Modbus RS-485

Radarowa sonda prędkości RSS-2-300W GEOLUX:

Zakres pomiaru prędkości przepływu	0,05 - 15m/s, • pomiar przepływu w dwóch kierunkach oraz detekcja kierunku przepływu
Dokładność pomiaru prędkości przepływu	± 2% wartości mierzonej lub ±0,02 m/s w zależności która wartość jest większa
Zasięg radaru prędkości przepływu	max. 50m
Częstotliwość robocza sondy prędkości przepływu	pasmo K w zakresie 24,125 - 24,200 GHz
Kąt wiązki sondy prędkości przepływu	poziom: 12 stopni, pion: 24 stopnie
Wpływ pozycji urządzenia na pomiar	 wbudowany wewnętrzny sensor pochylenia, automatyczna rejestracja i kompensacja zmiany kąta, optymalny kąt nachylenia w przedziale 30-60°
Komunikacja	RS-485, RS-232

Typowy czas pracy dla wybranych konfiguracji:

Częstotliwość wysyłania danych	Częstotliwość wykonywania pomiaru	Czas pracy - akumulator 55Ah 12V
48/24h (raz na 30 minut)	48/24h (raz na 30 minut)	33 miesiące
24/24h (raz na godzinę)	96/24h (raz na 15minut)	18 miesięcy
24/24h (raz na godzinę)	144/24h (raz na 10 minut)	12 miesięcy
24/24h (raz na godzinę)	288/24h (raz na 5 minut)	6 miesiące

3. Instalacja stacji pomiarowej

Przepływomierz *Aqua Logger Flow Modbus* jest urządzeniem przeznaczonym do dwukierunkowego pomiaru objętościowego natężenia przepływu cieczy w kanałach grawitacyjnych. Stacja pomiarowa została zaprojektowana z myślą o dokonywaniu pomiarów w instalacjach kanalizacji sanitarnej, kanałach burzowych, potokach i rzekach. Nadaje się zarówno do pomiaru objętościowego natężenia przepływu wody czystej, opadowej oraz ścieków. Zastosowana technologia zapewnia wysoką precyzję pomiaru, na którą nie mają wpływu czynniki zewnętrzne takie jak temperatura, wilgotność lub gęstość badanego medium. Pomiar nie jest wrażliwy na osad, zanieczyszczenie wody, dryfujące kawałki stałe lub inne zanieczyszczenia. Wszystkie czujniki posiadają stopień ochrony obudowy IP68 i mogą zostać zalane bez ich uszkodzenia. Dodatkowo materiały, z których zostały wykonane ich obudowy są odporne na trudne warunki panujące w sieci kanalizacji sanitarnej.

3.1. Wybór miejsca i sposobu montażu

Instalacja oraz umiejscowienie sondy prędkości jest kluczowym czynnikiem wpływającym na dokładność uzyskiwanych danych pomiarowych. Aby osiągnąć najlepszą dokładność pomiaru należy zainstalować urządzenie w miejscu gdzie przepływ nie jest turbulentny, profil koryta lub kanału jest stały, nie występują zakręty bezpośrednio przed i za miejscem pomiaru oraz nie występują inne zaburzenia przepływu np. uskoki, kaskady, doloty boczne itd. Idealna lokalizacja to długi, prostym kanał. Miejsca zrzutów, spadki pionowe, przegrody, krzywizny lub skrzyżowania przewodów powodują zniekształcenia profilu prędkości, dlatego należy zlokalizować miejsce instalacji jak najdalej od możliwych zakłóceń. Przepływ cieczy w miejscu instalacji powinien być możliwie jednolity oraz wolny od turbulencji i wirów. Ewentualny zakręt kanału powinien znajdować się w odległości minimum dziesięciu szerokości kanału przed miejscem wykonywania pomiaru. W przypadku występowania zakrętu za miejscem instalacji radaru, minimalna odległość wynosi trzy szerokości kanału. Ewentualne kaskady, wodospady, konstrukcje piętrzące powinny być usytuowane możliwie daleko od miejsca wykonywania pomiaru, tak aby nie powodowały zaburzeń przepływu. Analogicznie, pomiar nie może być wykonywany w bezpośredniej bliskości pomp. Sonda radarowa powinien znajdować się nad środkiem cieku. Obszar ten powinien być wolny od jakichkolwiek przeszkód np. zatory, roślinność, itp. W przypadku zamocowaniu radaru w kierunku napływu ścieku możliwy jest pomiar prędkości przepływu o mniejszych wartościach niż w przypadku skierowania urządzenia w strone odpływu. Minimalna wymagana odległość radaru predkości od mierzonego medium wynosi 2 cm, a maksymalna dochodzi do 50m. Radar predkości należy zamontować bardzo solidnie tak aby wyeliminować możliwość jego drgań. Drgania sensora są bardzo częstą przyczyną błędów pomiarowych. Radar wykorzystuje złożone filtry Kalmana z fizycznym modelowaniem przepływu w celu zapewnienia stabilnych pomiarów tak w warunkach wolnego i gładkiego przepływu jak i w warunkach turbulentnych. Należy pamiętać, że im warunki pomiaru są trudniejsze, tym czas trwania pojedynczego pomiaru powinien być dłuższy.

Rys. 1. Zalecane wartości kąta nachylenia

Radar prędkości jest wyposażony w wewnętrzny czujnik kąta nachylenia. Zmierzoną wartość kąta można zobaczyć w aplikacji do wizualizacji i analizy danych. Przyrząd powinien zostać skierowany na ciek pod katem w przedziale od 30° do 60° (Rys.1). Bezpośrednio po instalacji zalecane jest sprawdzenie wartości nachylenia zmierzonego przez przyrząd i dokonanie stosownych korekt, w przypadku gdy jest ono poza zakresem optymalnym. Pomiar nachylenia jest też domyślnie używany do wyliczenia prędkości medium. System wizualizacji i konfiguracji urządzenia umożliwia wyłączenie tej opcji. Po jej wyłączeniu, podawana wartość prędkości nie uwzględnia położenia radaru względem przepływającego medium. Wyłączenie opcji kompensacji kąta zalecane jest tylko dla zaawansowanych użytkowników i w przypadku niestandardowej pozycji radaru względem cieku. Wysokość radaru prędkości nad powierzchnią medium oraz kąt nachylenia sensora wyznaczają powierzchnię zwierciadła cieczy, która jest pokryta wiązką radarową. Obszar ten ma kształt elipsy (Rys.2). Zwracana przez radar wartość prędkości powierzchniowej jest wartością średnią dla tego obszaru.

Kąt	30°			35°		40°			45°			
H [cm]	D1 [cm]	D2 [cm]	L [cm]									
50	98,4	21,0	86,6	71,2	18,3	71,4	55,0	16,4	59,6	44,5	14,9	50,0
100	196,7	42,0	173,2	142,3	36,6	142,8	109,9	32,7	119,2	89,0	29,7	100,0
150	295,1	63,1	259,8	213,5	55	214,2	164,9	49,1	178,8	133,6	44,6	150,0
200	393,4	84,1	346,4	284,7	73,3	285,6	219,9	65,4	238,4	178,1	59,5	200,0
250	491,8	105,1	433,0	355,8	91,6	357,0	274,9	81,8	297,9	222,6	74,3	250,0
300	590,1	126,1	519,6	427,0	109,9	428,4	329,8	98,1	357,5	267,1	89,2	300,0

Rys. 2. Zależność wielkości obszaru pomiarowego od umiejscowienia radarowej sondy prędkości oraz poziomu cieczy

W momencie uderzenia fali elektromagnetycznej w powierzchnię cieczy, większość promieniowania zostaje odbita w kierunku przeciwnym, zgodnie z zasadą, że kąt padania równy jest kątowi odbicia. Tylko niewielka część promieniowania wraca do czujnika. Ilość ta zależy od chropowatości powierzchni cieczy. Im chropowatość jest większa, tym większy jest zakres pomiarowy urządzenia tj. radar jest w stanie dokonywać pomiaru przepływu przy mniejszych prędkościach. Aby radar działał prawidłowo, wymagane jest aby na powierzchni badanego medium znajdowały się przynajmniej małe fale. Im fale są mniejsze tym gęściej muszą występować aby pomiar był możliwy. Radar nie będzie wykonywał pomiaru gdy powierzchnia medium będzie idealnie gładka.

Jednorodność przepływu jest najważniejszym czynnikiem dla uzyskania dokładnych i stabilnych pomiarów. Poprzez dostosowanie kąta nachylenia i pozycji przyrządu, wyznacza się obszar na powierzchni cieczy, na którym będą wykonywane pomiary. Zastosowany w urządzeniu radar prędkości wykorzystuje bardzo czułe elementy odbiorcze. Zaletą stosowania odbiorników o wysokiej czułości jest możliwość pomiaru niskich prędkości już przy minimalnej chropowatości powierzchni. Urządzenie jest jednak podatne na czynniki zakłócające. W niektórych miejscach może dojść do sytuacji, w której część wiązki promieniowania odbita od powierzchni cieczy uderza w ruchomą przeszkodę i wraca do czujnika powodując błędy pomiaru. Zakłócenia można eliminować poprzez zmianę poziomu czułości, zmniejszanie poziomu wzmocnienia sygnału wysyłanego przez radar oraz poprzez użycie ustawień zaawansowanych.

Radar poziomu, który potrzebny jest do pomiaru pola przekroju czynnego przepływu, nie ma aż tak rygorystycznych wymogów co do miejsca instalacji. W jego przypadku należy wybrać takie miejsce montażu, które zapewni dostęp do jak największego pola powierzchni mierzonego medium. Jest to szczególnie istotne przy pomiarach na lustrze medium o przekroju mniejszym niż średnica wiązki radaru (np. kineta, kanał otwarty lub półotwarty, itp.). Wysokość instalacji nad dnem kanału nie może być większa niż zasięg sondy tj. 10 metrów. Warunkiem wykonania poprawnych pomiarów, jest ustawienie przyrządu prostopadle do poziomu lustra mierzonego medium. Radar poziomu może, lecz nie musi być instalowany w bezpośredniej bliskości radaru prędkości. Można na przykład zainstalować sondę prędkości przepływu bezpośrednio w kanale, a radar poziomu w studni. Ważne jest natomiast takie skalibrowanie urządzenia, aby pomiar poziomu cieczy odniesiony był do miejsca gdzie mierzona jest prędkość przepływu. Dzięki temu wyliczone pole przekroju czynnego będzie odnosiło się do miejsca pomiaru prędkości i wyliczona wartość przepływu będzie prawidłowa.

Sondy pomiarowe oraz rejestrator danych są montowane np. do ścian lub stropu kanału. Urządzenia są zasilane za pomocą akumulatora umieszczonego w obudowie technicznej zapewniającej stopień ochrony IP68. Przykładowe sposoby montażu stacji pomiarowej zostały przedstawione na poniższych zdjęciach:

Rys. 3. Przykładowy sposób montażu – radarowy czujnik poziomu napełnienia kanału

Rys. 4. Przykładowy sposób montażu - radarowy czujnik prędkości przepływu ścieków

Rys. 5. Przykładowy sposób montażu - rejestrator danych oraz akumulator w obudowie technicznej

Rys. 6 Przykładowy sposób montażu - czujnik poziomu napełnienia kanału oraz czujnik prędkości przepływu ścieków mocowane na wspólnym uchwycie

3.2. Pomiary

Po montażu, w celu przeprowadzenia konfiguracji sondy poziomu, należy zmierzyć i zanotować następujące wartości (będą one potrzebne w dalszym etapie konfiguracji):

Poziom zwierciadła medium - jest to rzeczywista odległość od dna zbiornika do zwierciadła wody lub ścieku.

Kalibracja pusty/pełny - jest to odległość od dna zbiornika do sondy poziomu (do miejsca zaznaczonego na Rysunku 6).

Rys. 7. Radarowa sonda do pomiaru poziomu cieczy

4. Pierwsze uruchomienie

4.1. Konfiguracja sondy poziomu za pomocą aplikacji SmartBlue

Przeprowadzenie konfiguracji sondy poziomu jest możliwe zdalnie, za pomocą bezprzewodowej komunikacji Bluetooth poprzez dedykowaną aplikację SmartBlue. Aplikacja jest dostępna do pobrania dla urządzeń z systemem operacyjnym Android ze Sklepu Google Play, a dla urządzeń z systemem operacyjnym iOS ze Sklepu iTunes. W celu przeprowadzenia konfiguracji, w zależności od posiadanej wersji należy:

W przypadku, gdy sonda poziomu jest podłączona za pomocą wtyczki lub gdy kabel jest wyprowadzony przez dławnice ale rejestrator nie jest wypełniony żelem i możliwe jest odłączenie przyrządu od rejestratora, należy doprowadzić do sondy zasilanie (10-30V DC) poprzez podłączenie przewodów plus i minus bezpośrednio do sondy (1-plus, 2-minus) lub do wtyczki (1-plus, 2-minus). Jeden koniec należy podłączyć źródło zasilania a drugi do przewodu sondy.

Przyporządkowanie przewodów FMR20, wersja Modbus

- 1 Plus: żyła brązowa
- Minus: żyła niebieska
- Linia Modbus D0/A (+): żyła biała
 Linia Modbus D1/B (-): żyła czarna

Rys. 8. Przyporządkowanie przewodów sondy poziomu

W przypadku gdy sonda poziomu jest zamontowana na stale (wnętrze rejestratora wypełnione żelem uszczelniającym) i nie ma możliwości jej odłączenia, przed rozpoczęciem konfiguracji należy zmienić tryb urządzenia na zasilanie ciągłe (Rys. 9). Czynność ta jest możliwa za pośrednictwem dedykowanej aplikacji sieciowej (rozdział 4.3). Uwaga! Zmiana trybu pracy zostanie wprowadzona w chwili wykonania przez rejestrator kolejnego połączenia. Wcześniejsza zmiana trybu pracy urządzenia skróci więc czas oczekiwania na możliwość rozpoczęcia konfiguracji sondy w miejscu instalacji.

Tryb pracy

W zasilaniu ciągłym	٣
Energooszczędny	
W zasilaniu ciągłym	

Rys. 9. Wybór trybu pracy urządzenia

- ✓ Dostarczona sonda ma domyślnie włączoną komunikację *Bluetooth*. Zaleca się zmianę tego parametru tak, aby komunikacja Bluetooth włączała się po 60 sekundach od momentu doprowadzenia zasilania do sondy. W celu wykonania konfiguracji urządzenia należy pobrać, zainstalować i uruchomić aplikację SmartBlue.
- Po uruchomieniu w aplikacji wyświetlane są dostępne urządzenia. Należy wybrać odpowiednie urządzenie a następnie zalogować się. Przy pierwszym logowaniu wprowadzić następujące dane:
 - Nazwa użytkownika → *admin*
 - Hasło → *numer seryjny przyrządu*
- Po pierwszym zalogowaniu hasło należy zmienić.

≡ Lista urządzeń dostępnych	← Logowanie	Logowanie
EH_FMR20_590117A	Logowanie do przetwornika EH_FMR20_590117A admin	Logowanie do przetwornika EH_FMR20_590117A Zaleca się zmianę hasła
	Hasło 💿 Zapomniałeś hasła?	Ok
	Przerwij Logowanie Wprowadź hasło i zaloguj się.	Zmień hasło
	Endress+Hauser	Endress + Hauser

Rys. 10. Logowanie w aplikacji SmartBlue

 Po zalogowaniu wyświetlone zostaną informacje o urządzeniu. Należy rozwinąć menu po lewej stronie u góry i nacisnąć *Ustawienia (Setup).*

\equiv Device information		F		≡ Setup			
ſſ	Device tag EH_FMR20_590117A Device type Micropilot FMR20	End	People for Process Automation	EH_FMR20_590117A PV 9.900 m Basic setup	✓		
	Serial number R502590117A	Device	: EH_FMR20_590117A	Mapping 	\rightarrow		
	01.00.04 Order code FMR20-8078/0	☆ ※	Home	Communication	>		
Status signal		-∿∘	Diagnostics				
ок		0	Livelist				
9.900 m		the literature	Settings				
0.100 m							
Signal quality No signal							

Rys. 11. Panel ustawień w aplikacji SmartBlue

- ✓ Po wyświetleniu ekranu ustawień należy wybrać Ustawienia podstawowe (Basic setup) i wprowadzić następujące dane:
 - ✓ *Kalibracja-Pusty (Empty calibration)* należy podać odległość od dna kanału do sondy poziomu.
 - ✓ Kalibracja-Pełny (Full calibration) należy podać odległość od dna kanału do sondy poziomu.

Uwaga!

Wartości parametrów "Kalibracja-Pusty" oraz "Kalibracja-Pełny" są sobie równe. Należy wpisać dokładnie te same dane.

Po wprowadzeniu powyższych danych wrócić do menu Ustawienia (Setup).

≡ Setup			\equiv Basic setup	
EH_FMR20_590117A	PV 9.900 m		EH_FMR20_590117A	PV 9.900 m 🗸
Basic setup		>	Distance unit	
Mapping		>	m	
Advanced setup		>	Empty calibration 10.000 m	
Communication		>	Full calibration	
			9.800 m	
			Distance	
			0.100 m	
			Level	
			9.900 m	
			Signal quality	
			No signal	

Rys. 12. Ustawienia podstawowe w aplikacji SmartBlue

- Po wyświetleniu ekranu ustawień należy dwukrotnie wybrać Ustawienia zaawansowane (Advanced setup, Advanced settings). Po wyświetleniu ekranu ustawień zaawansowanych (Advanced settings) zaleca się wprowadzenie następujących danych:
 - ✓ Czułość przetwarzania (Evaluation sensitivity). Wybór czułości przetwarzania echa mikrofalowego. Możliwe są następujące opcje do wyboru:
 - 1. *Niska* tzw. "krzywa ważona" jest ustawiona wysoko. Wszystkie zakłócenia, jak również echo użyteczne o małej amplitudzie, nie będą brane pod uwagę podczas przetwarzania widma mikrofalowego.
 - 2. *Średnia* tzw. "krzywa ważona" jest ustawiona w taki sposób, aby zapewnić poprawne przetwarzanie echa mikrofalowego i wykrywać echo użyteczne w typowych zadaniach pomiarowych.

3. *Wysoka* - tzw. "krzywa ważona" jest ustawiona nisko, aby na widmie mikrofalowym wykrywać echo użyteczne o małej amplitudzie. Mogą być brane pod uwagę także zakłócenia o porównywalnej amplitudzie.

Zalecany wybór ustawienia czułości przetwarzania: "Wysoka".

- Prędkość zmiany poziomu (Changing velocity). Wybór spodziewanej prędkości zmiany poziomu wody lub ścieku. Możliwe są następujące opcje do wyboru:
 - 1. < 10 cm/min
 - 2. < 1 m/min
 - 3. > 1 m/min
 - 4. Bez filtra / test

Zalecany wybór ustawienia prędkości zmiany poziomu: "> 1 m/min".

- ✓ Czułość na pierwsze echo (First Echo sensitivity). Ten parametr określa przedział, w którym będzie prowadzone przetwarzanie tzw. "pierwszego echa". Przedział ten jest rozwijany w dół licząc od wierzchołka najsilniejszego echa, jakie odnotował radar. Możliwe są następujące opcje do wyboru:
 - 1. Niska przedział jest wąski. Radar obserwuje dłużej najsilniejsze echo i nie przechodzi do analizy słabszych sygnałów odbitych, obserwowanych w odległościach mniejszych niż ta, w której występuje echo najsilniejsze.
 - 2. Średnia przedział jest pośredni, dostosowany do typowych sytuacji, w których najsilniejsze echo nie jest właściwym do obliczania poziomu.
 - 3. Wysoka przedział jest szeroki. Radar relatywnie szybko przechodzi do analizy słabszych sygnałów odbitych, obserwowanych w odległościach mniejszych niż ta, w której występuje echo najsilniejsze. Wśród nich wyszukuje echo o największej amplitudzie i na jego podstawie oblicza poziom.

Zalecany wybór ustawienia czułości na pierwsze echo: "Niska".

✓ Strefa martwa (Blocking distance). Określenie szerokości strefy martwej. Sygnały odbite, obserwowane na widmie mikrofalowym w strefie martwej, nie będą przetwarzane przez urządzenie.

W przypadku gdy możliwe jest występowanie intensywnego parowania medium, aby uniknąć błędów powstałych w wyniku odbijania fal elektromagnetycznych od wody skraplającej się na powierzchni obudowy urządzenia, zaleca się ustawienie strefy martwej na 20 cm.

✓ Odległość do przetwarzania (Evaluation distance). Obszar wyszukiwania echa użytecznego.

Należy podać odległość od dna kanału do sondy poziomu. Wartość parametru "Odległość do przetwarzania" jest równa wartości podanej przy wprowadzaniu parametrów "Kalibracja-Pusty" oraz "Kalibracja-Pełny". Należy wpisać dokładnie te same dane.

✓ Po wprowadzeniu powyższych danych wrócić do menu Ustawienia (Setup).

≡ Setup				
EH_FMR20_590117A	PV 9.900 m 🔽	EH_FMR20_590117A	PV 9.140 m 🧹	EH_FMR20_590117A PV 9.316 m 🗹
Basic setup	>	Access status tooling	>	Evaluation sensitivity Medium
Mapping	>	Advanced settings	>	Chan eine under ihr
Advanced setup	>	Safety settings	>	Standard <1 m (40 in)/min
Communication	>	Linearization table	>	First Echo sensitivity
		Administration	>	Medium
				Output mode
				Level linearized
				Blocking distance
				0.100 m
				Level correction
				0.000 m
				Evaluation distance
				15.000 m
				Sensor measurement behaviour
				Continuous
Rys. 13. Ustawienia zaawa	nsowane w aplik	acji SmartBlue		

- Po wyświetleniu ekranu ustawień należy wybrać *Mapowanie (Mapping)*. Następnie nacisnąć *Krzywa obwiedni echa (Envelope curve).*
- Wyświetli się wykres i rozpocznie proces mapowania, który potrwa około 20 sekund. Po jego zakończeniu, na ekranie urządzenia pojawi się wykres siły echa w zależności od odległości od sondy. Sonda domyślnie przyjmie, że największe echo obrazuje odległość od sondy zwierciadła ścieku. Zostanie ono wskazane niebieskim trójkątem. Jeśli odległość ta jest poprawna należy wrócić do poprzedniego menu używając strzałki umieszczonej u góry po lewej stronie i na kolejnym ekranie potwierdzić, że sonda pokazuje odległość poprawną. W przypadku występowania zakłóceń, echo od nich generowane będzie widoczne na wykresie krzywej obwiedni echa. Dane zakłócenie możemy wyciąć klikając ikonę w prawym górnym rogu ekranu. Po jego kliknięciu i wybraniu ręcznego trybu mapowania, pojawi się opcja wpisania odległości z jakiej radar ma ignorować echo. Po jej wpisaniu echo z podanego zakresu odległości nie będzie brane przez sondę pod uwagę przy pomiarze poziomu zwierciadła wody lub ścieku.
- Po wykonaniu powyższych czynności należy wrócić do *Ekranu domyślnego (Device information)*.
 Wyświetlana wartość *Poziomu* powinna być możliwie bliska rzeczywistej odległości od dna zbiornika do lustra mierzonego medium. Korektę (±2cm) można wprowadzić w dalszym etapie konfiguracji za pośrednictwem systemu wizualizacji danych lub w zintegrowanym z urządzeniem systemie SCADA.

≡ Setup		≡ Mapping
EH_FMR20_590117A PV 9.900 m	 Image: A start of the start of	EH_FMR20_590117A PV 9.900 m
Basic setup	>	Confirm distance Distance unknown
Mapping Advanced setup	>	Present mapping 1.456 m
Communication	>	Distance
		0.100 m
		Envelope curve

Rys. 14. Proces mapowania

\equiv Device inf	ormation
	Device tag Image: Comparison of the second
Status signal	
ОК	
Level linearized	
9.900 m	
Distance	
0.100 m	

Rys. 16. Ekran główny w aplikacji SmartBlue

✓ Po przeprowadzeniu konfiguracji sondy pomiarowej należy w menu ustawień wybrać kolejno:

→ Komunikacja → Konfiguracja Bluetooth → Opóźnienie włączenia komunikacji Bluetooth

\rightarrow Communication \rightarrow Bluetooth configuration \rightarrow Bluetooth activation delay

Przy podłączonym zasilaniu przyrządu możliwe jest ustawienie opóźnienia włączenia komunikacji Bluetooth. Pozwala to zmniejszyć zużycie energii. Wprowadzona wartość odpowiada opóźnieniu w sekundach od chwili załączenia sondy pomiarowej.

Zaleca się ustawienie wartości opóźnienia włączenia komunikacji Bluetooth na 60 sekund.

≡ Setup						\equiv Bluetooth config	uration		← Bluetooth activ	ation delay
EH_FMR20_590117A	PV 9.900 m		EH_FMR20_590117A	PV 9.316 m		EH_FMR20_590117A	PV 9.316 m		q	8
Basic setup)	>	Modbus configuration		>	Bluetooth mode		Range: 0 65535		
Mapping)	>	Bluetooth configuration		>	On	On			
Advanced setup	2	>				Bluetooth activation delay 0				
Communication	2	>								

Rys. 17. Ustawienia komunikacji Bluetooth

W celu ponownego wykonania konfiguracji należy wykonać następujące kroki:

- 1. W zależności od posiadanej wersji należy doprowadzić do sondy zasilanie 10-30V DC lub zmienić tryb pracy urządzenia na zasilanie ciągłe (patrz rozdział 4.3)
- Odczekać 60 sekund (jeżeli taka wartość opóźnienia włączenia komunikacji Bluetooth została ustawiona). Po minucie komunikacja *Bluetooth* zostanie automatycznie włączona i możliwe będzie wykonanie ponownej konfiguracji sondy pomiarowej.

4.2. Podłączenie stacji pomiarowej

Zależnie od posiadanej wersji, po wykonaniu konfiguracji za pomocą aplikacji SmartBlue należy:

- W przypadku, gdy sonda poziomu jest podłączona za pomocą wtyczki lub gdy kabel jest wyprowadzony przez dławnice ale rejestrator nie jest wypełniony żelem i możliwe jest odłączenie przyrządu od rejestratora, należy odłączyć sondę poziomu od zasilania a następnie podłączyć obie sondy do gniazd znajdujących się w rejestratorze danych. Po podłączeniu sond rejestrator danych zostanie automatycznie uruchomiony i włączona zostanie transmisja GPRS. Po kilku minutach dane pomiarowe będą widoczne w systemie online.
- W przypadku gdy sonda poziomu jest zamontowana na stale i nie ma możliwości jej odłączenia, po zakończeniu konfiguracji należy zmienić tryb urządzenia z zasilania ciągłego na energooszczędny. Czynność ta jest możliwa za pośrednictwem dedykowanej aplikacji sieciowej (rozdział 4.3).

Informacje dotyczące logowania, konfiguracji stacji oraz użytkowania systemu znajdują się w kolejnych rozdziałach.

4.3. Konfiguracja sond pomiarowych w aplikacji online

Producent *(PM Ecology Sp. z o.o.)* zapewnia dostęp do dedykowanej aplikacji sieciowej do wizualizacji danych pomiarowych. Dane do logowania, tj. login oraz hasło, zostaną udostępnione wraz z zakupionym urządzeniem. Istnieje możliwość zapewnienia pełnej, opisanej poniżej funkcjonalności również bezpośrednio z posiadanego przez użytkownika systemu SCADA. Po szczegóły prosimy o bezpośredni kontakt z firmą PM Ecology. W przypadku integracji z posiadanym przez użytkownika systemem SCADA, opisane poniżej możliwości wizualizacji i eksportu danych będą uzależnione od dostępności ich w danym systemie SCADA. W takiej sytuacji poniższy opis należy traktować jako opis funkcjonalności możliwych do uzyskania. Integracja z systemem SCADA użytkownika jest zawsze poprzedzona wnikliwą analizą oczekiwanych funkcjonalności, jakie użytkownik chce mieć bezpośrednio dostępne z posiadanego systemu SCADA. Należy pamiętać, że poza przedstawionymi funkcjonalnościami firma PM Ecology może dodać jeszcze inne nieopisane w tym dokumencie. Przykładowo do ustalenia jest czy po serii nieudanych prób połączenia rejestrator najpierw prześle do systemu SCADA dane najnowsze czy najstarsze. Możliwe jest też udostepnienie wyboru przez operatora obsługi pamięci rejestratora tj. czy pamięć będzie zapełniana cyklicznie (najnowsze rekordy zastępują najstarsze) lub czy pamięć będzie używana tylko do momentu jej zapełnienia.

✓ W celu wykonania konfiguracji urządzenia, należy zalogować się do swojego konta na stronie: https://system.pmecology.com

Zaloguj się	
Email	
Hasło	
Nie pamiętam hasła	
	OK Anuluj

Rys. 18. Logowanie w systemie online

- Po zalogowaniu do systemu, należy rozwinąć zakładkę na górze strony *Obsługa stacji* i wybrać z listy nazwę
 Swojej Stacji.
- ✓ Następnie należy przejść do zakładki Ustawienia kanałów. W tym miejscu możliwa jest zmiana nazwy urządzenia, nazw mierzonych parametrów oraz jednostek miary. Dostępne są następujące jednostki:
 - poziom: mm, cm, m
 - prędkość przepływu: m/s
 - natężenie przepływu: m³/h, l/s

Standardowo system wizualizacji i analizy danych umożliwia użytkownikowi dodanie dwóch własnych kalkulacji. Dzięki temu można np. kalkulować aktualne wypełnienie kanału w % lub aktualne natężenie przepływu jako % maksymalnego do tej pory zaobserwowanego.

Aplikacja online wspiera i umożliwia pełną zdalną konfigurację czujnika prędkości przepływu ścieków.
 W kolejnych podrozdziałach opisano możliwości konfiguracyjne dla obu sond pomiarowych.

🚄 РМ І	Ecology		PL EN	LOGIN -
	a Analiza danych Obsługa stacji Zarządzanie kryz			
NAZWA	STACJI metry pracy 🗘 Ustawienia kanałów 🕏 Ustawienia reje	strowania 🔅 U	لعل Ana Istawienia ogólne 🕐 Udostępnianie	liza danych
	zmień nazwę			
Nr kanału	Nazwa	Jednostka	Konfiguracja	
1	Poziom wody	m •	Kalibracja pusty / pełny: 2.37 m Korekta poziomu: 0 m Uśredniaj pomiar z: 50 próbek Opóźnienie pomiaru: 10 próbek	٥
2	Prędkość	m/s 🗸	Próg czvłości: 30 Poziom wzmocnienia sygnału: 8 Uśredniaj pomiar z: 50 próbek Opóźnienie pomiaru: Automatyczne Kierunek przepływu: Napływający Położenie radaru: Normalne Automatyczna kompensacja kąta: Włączona	٥
3	Przepływ	m^3/h	Współczynnik prędkości dla poziomu 0 m: 1	
4	Przepływ	l/s		٥
5	Licznik przepływu	m^3	Ostatnie kasowanie licznika zostało wykonane: -	٥
6	Poziom osadu	cm	Poziom osadu jest uwzględniany w kalkulacji przepływu Obecny poziom osadu uwzględniany w kalkulacji przepływu wynosi: 15 cm	0
7	Pole przekroju czynnego	m^2	Kształt kanału: Okrągły Średnica: 1 m	٥
8	Krzywa prędkości przepływu			

Rys. 19. Konfiguracja - ustawienia wstępne

4.3.1. Konfiguracja sondy poziomu

Po naciśnięciu przycisku
 po prawej stronie (Kanał nr 1) możliwa będzie konfiguracja radaru poziomu cieczy:

Kalibracja pusty/pełny: odległość od dna zbiornika do sondy poziomu.

Korekta poziomu: wartość dodawana lub odejmowana od wartości poziomu przekazywanej przez sondę w celu umożliwienia dokładnej kalibracji.

Uśredniaj pomiar z: ilość pomiarów cząstkowych branych pod uwagę podczas uśredniania pojedynczego pomiaru napełnienia. Maksymalna wartość możliwa do ustawienia wynosi 200.

Opóźnienie pomiaru: należy podać liczbę pomiarów cząstkowych, które mają zostać pominięte po włączeniu urządzenia pomiarowego. Maksymalna wartość możliwa do ustawienia wynosi 100.

✓ Po wybraniu odpowiedniej opcji, możliwy będzie także wybór z listy ustawień zaawansowanych następujących parametrów:

Czułość radaru: wybór czułości przetwarzania echa mikrofalowego. Możliwe są następujące opcje do wyboru:

- Niska tzw. "krzywa ważona" jest ustawiona wysoko. Wszystkie zakłócenia, jak również echo użyteczne o małej amplitudzie, nie będą brane pod uwagę podczas przetwarzania widma mikrofalowego.
- Średnia tzw. "krzywa ważona" jest ustawiona w taki sposób, aby zapewnić poprawne przetwarzanie echa mikrofalowego i wykrywać echo użyteczne w typowych zadaniach pomiarowych.
- Wysoka tzw. "krzywa ważona" jest ustawiona nisko, aby na widmie mikrofalowym wykrywać echo użyteczne o małej amplitudzie. Mogą być brane pod uwagę także zakłócenia o porównywalnej amplitudzie.

Czułość na pierwsze echo: parametr określający przedział, w którym będzie prowadzone przetwarzanie tzw. "pierwszego echa". Przedział ten jest rozwijany w dół licząc od wierzchołka najsilniejszego echa, jakie odnotował radar. Możliwe są następujące opcje do wyboru:

- Niska przedział jest wąski. Radar obserwuje dłużej najsilniejsze echo i nie przechodzi do analizy słabszych sygnałów odbitych, obserwowanych w odległościach mniejszych niż ta, w której występuje echo najsilniejsze.
- Średnia przedział jest pośredni, dostosowany do typowych sytuacji, w których najsilniejsze echo nie jest właściwym do obliczania poziomu.
- Wysoka przedział jest szeroki. Radar relatywnie szybko przechodzi do analizy słabszych sygnałów odbitych, obserwowanych w odległościach mniejszych niż ta, w której występuje echo najsilniejsze. Wśród nich wyszukuje echo o największej amplitudzie i na jego podstawie oblicza poziom.

Maksymalna dopuszczalna prędkość zmiany poziomu: wybór spodziewanej prędkości zmiany poziomu wody lub ścieku. Możliwe są następujące opcje do wyboru:

- > 1 m/min
- < 1 m/min
- < 10 cm/min
- nie filtruj
- Po uzupełnieniu danych należy nacisnąć Zapisz.

Ustawienia radaru poziomu wody

Kalibracja pusty / pełny	1,465	m
Korekta poziomu	-0,02	m
Uśredniaj pomiar z	5	próbek
Opóźnienie pomiaru	20	próbek

🗌 Zapisuj pomiary cząstkowe w plikach CSV

🗹 Włącz ustawiania zaawansowane

	Anuluj	Zapisz
Maksymalna dopuszczalna prędkość zmiany poziomu	>1m/mii	n •
Czułość na pierwsze echo	Niska	~
Czułość radaru	Wysoka	~

Rys. 20. Konfiguracja radarowej sondy poziomu

4.3.2. Konfiguracja sondy prędkości

W następnym kroku, po naciśnięciu kolejnego przycisku
 (Kanał nr 2) możliwa będzie konfiguracja sondy prędkości. Poszczególne parametry i możliwości konfiguracji zostały opisane na kolejnych stronach.

2	Prędkość z radaru		m/s 🗸	Próg czułości: 20 Poziom wzmocnienia sygnału: 5 Uśredniaj pomiar z: 50 próbek Opóźnienie pomiaru: Automatyczne Kierunek przepływu: Napływający Położenie radaru: Normaine Automatyczna kompensacja kąta: Włączona	٥
		Ustawienia rad	laru prędkości		

	20		
Poziom wzmocnienia sygnału	5	~	
Uśredniaj pomiar z	50		próbek
Opóźnienie pomiaru	Automatyczne	~	
Kierunek przepływu	Napływający	*	
Położenie radaru	Normalne	~	
Automatyczna kompensacja kąta	Włączona	~	

Rys. 21. Konfiguracja sondy prędkości cieku

Próg czułości:

Jest to wielkość bezwymiarowa w zakresie od 1 do 100, przy pomocy której steruje się czułością radaru. Gdy próg czułości jest ustawiony na niskim poziomie (wartości bliskie 0) do kalkulacji prędkości uwzględniane jest nawet najsłabsze powracające echo. Podnoszenie wartości progu czułości skutkuje stopniowym odrzucaniem słabych ech. W efekcie radar dokonuje kalkulacji tylko na podstawie silniejszych sygnałów. W przypadku przepływów szybkich i zafalowanych zalecane jest ustawienie wysokiej wartość progu czułości (>30), gdyż echo odbite od powierzchni badanej cieczy będzie zawsze bardzo mocne, a zakłócenia, które generują słabe echa, nie będą wpływać na wynik pomiaru. Ustawienie niższych wartości progu czułości niezbędne jest przy niskich prędkościach oraz gładkim przepływie. Wówczas echa odbite od fal są słabe i ustawienie zbyt dużego progu czułości uniemożliwi pomiar tj. spowoduje pojawienie się zerowych wartości prędkości przepływu. Przy niskich wartościach progu czułości radar podatny jest zakłócenia, ponieważ analizuje również najsłabsze echa pochodzące od odbicia fali elektromagnetycznej o różne przeszkody w pobliżu. Dobą praktyką jest początkowe ustawienie progu czułości na poziomie 30 i obserwowanie wskazań. Jeśli pojawią się błędy pomiarowe, próg czułości należy podnieść. Jeśli błędy pomiarowe się nie pojawią, a próg prędkości minimalnej, przy którym radar zaczyna wskazywać wartości zerowe jest zbyt wysoki to wartość progu czułości należy obniżyć. Czynności te należy powtarzać aż do osiągnięcia zadowalających rezultatów. Co ważne, włączając ustawienia zaawansowane, możliwe jest ustawienie różnych wartości progów czułości od aktualnego poziomu cieczy.

Poziom wzmocnienia sygnału:

Poziom wzmocnienia sygnału także jest wielkością bezwymiarową. Za pomocą tego parametru możemy ograniczać maksymalną moc wiązki wysyłanej przez radar. Wartość 1 odpowiada minimalnej a wartość 8 maksymalnej mocy wiązki. W przypadku systemu kanalizacyjnego zalecane jest ustawienie wartości wzmocnienia sygnału na poziomie 5.

Uśredniaj pomiar z:

Radar prędkości dokonuje 10 pomiarów prędkości przepływu w ciągu każdej sekundy. Za pomocą tego ustawienia możliwe jest ustalenie liczby pomiarów cząstkowych, z których zostanie wyliczona średnia prędkość przypływu w ustawionej jednostce czasu. Możliwy jest wybór wartości z zakresu od 1 do 300 pomiarów cząstkowych.

Opóźnienie pomiaru:

Możliwy jest wybór pomiędzy automatycznym a manualnym opóźnieniem pomiaru. W przypadku automatycznego opóźnienia pomiaru do obliczenia średniej prędkości przepływu są brane wartości cząstkowe począwszy od pierwszej niezerowej prędkości. Maksymalna liczba pomiarów cząstkowych, które zostaną pominięte wynosi 50 (w trybie automatycznym).

Jeżeli wybrane zostanie manualne opóźnienie pomiaru należy podać liczbę pomiarów cząstkowych, które mają zostać pominięte po włączeniu urządzeni pomiarowego. W sytuacji gdy przepływ jest bardzo szybki można ustawić tę wartość na poziomie 0. W przypadku niskich prędkości przepływów urządzenie potrzebuje więcej czasu na stabilizację pomiaru i należy zwiększyć liczbę pomijanych pomiarów. Maksymalna liczba pomiarów cząstkowych, które zostaną pominięte jest uzależniona od ilości pomiarów cząstkowych przeznaczonych do uśrednienia. Suma obu wartości nie może być większa niż 300.

Kierunek przepływu:

Po instalacji należy wskazać czy czujnik prędkości został zainstalowany w taki sposób, że medium porusza się w jego kierunku czy od niego odpływa. W przypadku gdy ciek może poruszać się w obu kierunkach należy zaznaczyć opcję "oba". Przy zaznaczonej opcji "oba" ujemne wartości prędkości oznaczają odpływ medium od radaru, a dodatnie sygnalizują ciek napływający. Zalecane jest takie zainstalowanie czujnika, aby był on zwrócony w kierunku napływu, ponieważ takie położenie umożliwi pomiar nawet najmniejszych prędkości przepływu.

Położenie radaru:

Standardowo radar prędkości powinien być instalowany w ten sposób aby jego dłuższy bok znajdował się w płaszczyźnie pionowej. Natomiast w przypadku prowadzenia pomiarów na szerokich ciekach należy zamocować czujnik obrócony o 90° oraz zaznaczyć tę opcję w ustawieniach. Po przeprowadzeniu instalacji konieczna jest weryfikacja kąta nachylenia mierzonego przez urządzenie.

Automatyczna kompensacja kąta (dla zaawansowanych użytkowników):

Radar dokonuje pomiaru prędkości przepływu w kierunku radaru, a nie w kierunku faktycznego przepływu. Aby wyliczyć prędkość faktycznego przepływu w płaszczyźnie poziomej, wartość zmierzona przez radar musi zostać podzielona przez kosinus kąta nachylenia radaru. W przypadku włączenia tej opcji (ustawienie domyślne) radar będzie wykonywał tę operację automatycznie. Dzięki wbudowanemu czujnikowi pochylenia, wartość prędkości przepływu będzie wyliczana automatycznie dla całego dopuszczalnego zakresu pochylenia radaru.

Istnieje możliwość wyłączenia opcji Automatycznej kompensacji kąta. W takim przypadku kąt nachylenia radaru nie będzie uwzględniany w obliczeniach prędkości przepływu cieczy. Umożliwia to wybranie innego miejsca instalacji urządzenia niż standardowe. Przy zaistnieniu takiej konieczności radar można zamontować tak, aby nie był skierowany równolegle do lustra cieczy. Przykładowo, może zostać zamontowany do boku kanału. Wyłączenie ustawienia Automatycznej kompensacji kąta wymaga manualnego przeliczania prędkości zmierzonej na prędkość rzeczywistą i jest zalecane tylko dla zaawansowanych użytkowników.

Włącz ustawienia zaawansowane:

Istnieje możliwość konfiguracji parametrów opisanych powyżej dla różnych wartości poziomu cieczy. Po włączeniu ustawień zaawansowanych część opcji pozostaje dalej aktywna a ich ustawienie wpływa na pracę urządzenia niezależnie od aktualnego poziomu medium. Są to: kierunek przepływu, położenie radaru oraz automatyczna kompensacja kąta. Natomiast możliwość konfiguracji pozostałych parametrów podstawowych zostaje wyłączona w górnej tabeli. Użytkownik uzyskuje dostęp do wyboru ustawienia wspomnianych parametrów w Filtrze zaawansowanym (tabela dolna). Dodatkową możliwością jest ustawienie innych wartości parametrów dla różnych zakresów wartości poziomu medium. Poza parametrami dostępnymi w ustawieniach podstawowych (próg czułości, liczba próbek do uśrednienia pomiaru, opóźnienie pomiaru oraz poziom wzmocnienia sygnału) użytkownik zyskuje możliwość wybrania zakresów wartości prędkości przepływu, które będą uwzględniane przez radar w obliczeniach.

n wzmocn niaj pomia iienie pom	ienia : r z	sygnału		Włączony filtr zaawansowany										
niaj pomia iienie pom	r z			Włączony	filtr zaaw	ansowany								
ienie pom				Włączony	filtr zaaw	vansowany	próbek							
	iaru			Włączony filtr zaawansowany										
runek przepływu Napływający 🔻														
Położenie radaru Normalne				Ŧ										
natyczna ko	ompe	nsacja kąta		Włącz		٣								
lastosuj u: poziomu	stawi	enia dla		Próg			Onóźnienie	Pozio	Poziom		Uwzględniaj tylko pomiary o wartości prędkości			
Dd		Do		czułości	Uśredi	niaj pomiar z	pomiaru	sygna	sygnału		Od		Do	
0) m	1.3599!	m	30	50	próbek	Automaty:	8	Ŧ	0	m/s	15	m/:	
	m		m			próbek			*		m/s		m/	
	m		m			próbek			•		m/s		m/:	
suj pomia	ry czą	stkowe w pli	kach	CSV										
	atyczna kr z ustawia z ustawia zastosuj us oziomu od 0 suj pomia	inie radaru iatyczna kompe iz ustawiania za ZaaWanSOWa koziomu od 0 m m suj pomiary czą	inie radaru iatyczna kompensacja kąta iz ustawiania zaawansowan čaatwansowany tastosuj ustawienia dla ioziomu od Do 0 m 1.3599: m 1.3599: m 2.3599: m 2.3599: m 2.3599: m 3.3599: m 3.3599	atyczna kompensacja kąta z ustawiania zaawansowane Zaawansowaru taotosuj ustawienia dla tooziomu Do 0 m 1.3599 m m m m m suj pomiary cząstkowe w plikach	Inie radaru Normaln atyczna kompensacja kąta Włącz zz ustawiania zaawansowane Zaawansowany tastosuj ustawienia dla koziomu Do czułości 0 m 1.3599 m 30 m m m 30 m m m 10000000000000000000000000000000	Normalne atyczna kompensacja kąta Włącz z ustawiania zaawansowane Włącz żadwansowany Próg dodowany Próg od Do n 1.3599! m m m m m m m suj pomiary cząstkowe w plikach CSV	Normalne • atyczna kompensacja kąta Włącz • zu stawiania zaawansowane - • żadwansowany - - zaawansowany - - żadosuju ustawienia dla koziomu - - od Do - - od Do - - om 1.3599! m 30 m m - - m m - - suj pomiary cząstkowe w plikach CSV - -	Normalne • atyczna kompensacja kąta Włącz • włącz • zu stawiania zaawansowane zaawansowany zaawansowany astosuj ustawienia dla koziomu Próg czułości Opóźnienie pomiaru od Do Fróg czułości Uśredniaj pomiar z om 1.3599 m 30 50 próbek m m próbek • suj pomiary cząstkowe w plikach CSV	Inie radaru Normalne atyczna kompensacja kąta Włącz włącz • zu stawiania zaawansowane	Normalne • atyczna kompensacja kąta Włącz • ustyczna kompensacja kąta Włącz • zu ustawiania zaawansowane zaawansowane Próg Próg	Normalne • atyczna kompensacja kąta Włącz • zu stawiania zaawansowane zu stawiania zaawansowane • ZaawanSOWaryu Próg Opóźnienie pomiaru Poziom wzmornienia sygnału Od Od Do czułości Uśredniaj pomiar z Opóźnienie pomiaru Poziom wzmornienia sygnału Od 0 m 1.3599! 30 50 próbek Automatyc 8 0 m m m próbek • • • • suj pomiary cząstkowe w plikach CSV suj pomiary cząstkowe w plikach CSV • • • •	Inite radaru Normalne Ime radaru atyczna kompensacja kąta Włącz Ime radaru zu stawiania zaawansowane zu stawiania zaawansowane Ime radaru ZaawanSowany Próg Próg Próg Da czułości Uśredniaj pomiar z Poziom Ime radaru O m 1.3599 30 50 próbek Automatyc Ime radaru Ime radaru m m m próbek Ime radaru Ime radaru Ime radaru suj pomiaru próbek Ime radaru Ime radaru Ime radaru Ime radaru 0 m international internation internatinternational international international inte	Inie radaru Normalne atyczna kompensacja kąta Włącz zu stawiania zaawansowane Zaawansowany atosuju ustawienia dla bolo Próg Uśredniaj pomiarz Próg Czułości Uśredniaj pomiarz Próg Om 1.3599! M	

Rys. 22. Okno ustawień zaawansowanych

Zapisuj pomiary cząstkowe w plikach CSV:

Po włączeniu tej opcji i naciśnięciu: *Kliknij aby przeglądać / pobierać pliki CSV* otwiera się nowe okno, w którym użytkownik może pobrać wybrany plik zawierający cząstkowe pomiary prędkości przepływu medium (przed uśrednieniem).

Należy pamiętać, że w nazwie pliku widnieje czas UTC (Uniwersalny czas koordynowany).

	Zastosuj ust	awie	nia dla pozi	iomu	Duán		0- i i - l - l -			Poziom		Uwzględniaj tylko pomiary o wartości prędkości			
	Od		Do		czułości	Uśredniaj pom	iar z pomiaru		sygnału	Od		Do			
ø	0	cm	76.5	cm	30	50 pról	Automaty	•	8.00 •	0	m/s	15	m/s		
		cm		cm		pról	bek	¥	¥		m/s		m/s		
		cm		cm		pról	bek	•	•		m/s		m/s		
Zapisuj pomiary cząstkowe w plikach CSV Kliknij aby przeglądać / pobierać pliki CSV															

Rys. 23. Okno ustawień zaawansowanych - pomiary cząstkowe

Uruchom tryb widoku na żywo:

Przejście do trybu widoku na żywo możliwe jest zarówno z poziomu ustawień podstawowych jak i zaawansowanych. Po wybraniu tej opcji otwiera się nowe okno, w którym użytkownik ma możliwość włączenia (zielony przycisk) trybu śledzenia pomiarów w czasie rzeczywistym. W tym trybie aktualizacja wartości mierzonych następuje co 0,5 sekundy, a więc możliwe jest dużo szybsze skonfigurowanie urządzenia. W trybie widoku na żywo, użytkownik może w czasie rzeczywistym modyfikować ustawienia radaru prędkości. Istnieje także możliwość przeglądu danych pomiarowych z poprzednich sesji.

Tryb śledzenia pomiarów w czasie rzeczywistym

Rys. 24. Konfiguracja w trybie widoku na żywo

- ✓ W celu przeprowadzenia dalszej konfiguracji należy wrócić do zakładki *Ustawienia kanałów.*
- ✓ Po naciśnięciu ⁽²⁾ (zgodnie z poniższym zaznaczeniem) możliwe będzie ustawienie współczynników kalibracyjnych dla danego kanału. Parametry te mogą zostać wprowadzone przez użytkownika lub opcjonalnie przez producenta.

3	Przepływ	m^3/h	Współczynnik prędkości
4	Przepływ	l/s	•

Rys. 25. Okno ustawień - kanały 3 i 4

	Zastosuj ustav	vienia	a dla poziomu		
	Od		Do	Współczynnik prędkoœci	
1	0	m	1.3599995 n	n	0,862
		m	n	n	
		m	n	n	
		m	n	n	
		m	n	n	

Rys. 26. Ustawienia - współczynnik prędkości

- W celu przeprowadzenia dalszej konfiguracji należy wrócić do zakładki Ustawienia kanałów.
- Po naciśnięciu (zgodnie z poniższym zaznaczeniem) możliwe będzie wyzerowanie stanu licznika przepływu.

5	Licznik przepływu	m^3	Ostatnie kasowanie licznika zostało wykonane:	2

Rys. 27. Okno ustawień - kanał 5

Rys. 28. Ustawienia - licznik przepływu

- ✓ W celu przeprowadzenia dalszej konfiguracji należy wrócić do zakładki *Ustawienia kanałów.*
- Po naciśnięciu (zgodnie z poniższym zaznaczeniem) należy wybrać, czy poziom osadu ma być uwzględniany w kalkulacji przepływu.

6	Poziom osadu	cm	Poziom osadu nie jest uwzględniany w kalkulacji przepływu
Rys. 29.	Okno ustawień - kanał 6		
Usta	wienia osadu		
Uw	zględniaj poziom osadu w kalk	ulacji przepływu	
Ostat	nie poziomy osadu		
Lp.	Data i godzina	Poziom osadu	

Wyłączony

Rys. 30. Ustawienia - poziom osadu

Od 2019-06-30 20:35:14

1

- ✓ W celu przeprowadzenia dalszej konfiguracji należy wrócić do zakładki *Ustawienia kanałów.*
- Po naciśnięciu (zgodnie z poniższym zaznaczeniem) możliwe będzie wybranie kształtu oraz wymiarów przekroju kanału. W zależności od wybranego kształtu, należy podać wymiary zgodnie z wytycznymi pojawiającymi się na ekranie. Na przykład po wybraniu przekroju okrągłego użytkownik zostanie poproszony o podanie średnicy.
- Istnieje także możliwość zdefiniowania kształtu kanału za pomocą punktów. W tym celu w Ustawieniach przekroju należy wybrać Zdefiniowany za pomocą punktów. Następnie możliwe będzie wpisanie ręczne lub wczytanie z pliku danych określających współrzędne kolejnych wierzchołków wielokąta.

7	Pole przekroju cz	ynnego	m^2	Kształt kanału: Szerokość:	٥
Rys.	31. Okno ustawień - J	kanał 7			
U	stawienia przekro	ju			
Ks	ztałt kanału: (brak) Wyb	ierz inny kształt			
					Anuluj Zapisz
Rys.	32. Ustawienia - prze	krój kanału			
Usi	tawienia przekroju				
	\times				
	(brak)	Prostokątny	Okrągły	Trapezowy z zagłębieniem prostokątnym	
	Jajowy	Jajowy spłaszczony	Jajowy podwy:	szony Jajowy poszerzony	
	Łukowy	Dzwonowy	Owalny	Gruszkowy	
	\sum				
	Zdefiniowany za pomocą				
	punktow				
				Anuluj Zapisz	

Rys. 33. Ustawienia - wybór kształtu kanału

 W celu dokończenia konfiguracji należy wrócić do zakładki Ustawienia kanałów i wybrać tryb pracy urządzenia. W trybie energooszczędnym następuje okresowe wyłączanie sond pomiarowych natomiast w trybie zasilania ciągłego czujniki oraz modem są cały czas włączone. Ustawienia urządzeń są takie same, niezależnie od wybranego trybu pracy.

_				
TEN	_{th}	D		CN
	/1	LU I		ιv
			_	-,

W zasilaniu ciągłym	•
Energooszczędny	
W zasilaniu ciągłym	

Rys. 34. Ustawienia - tryb pracy urządzenia

✓ W celu dostosowania ustawień częstotliwości wykonywania pomiarów i nadawania danych należy przejść do następnej zakładki tj. Ustawienia rejestrowania.

PM Ecology			PL		LOGIN -
Urządzenia Analiza danych Obsługa stacji Zarządzanie kryzysowe	Alarmy				
NAZWA STACJI					Lul Analiza danych
🗠 Parametry pracy 🛛 🏶 Ustawienia kanałów 🗳 Ustawienia rejestrowania	🗘 Ust	awienia ogólne 🛛 🏕 Udostępnianie			
Częstotliwość pomiarów i nadawania					
Gdy wszystkie parametry w normie		Gdy jeden z parametrów zostani	e przek	roczony	
Częstotliwość wykonywania pomiarów		Częstotliwość wykonywania pomia	rów		
5 min	~	1 min			~
Częstotliwość wysyłania danych		Częstotliwość wysyłania danych			
1 godz	~	1 min			~
Ponowna wysyłka danych po nieudanej próbie połączenia		Ponowna wysyłka danych po nieud	anej pró	óbie połączer	nia
Przy następnej planowej próbie połączenia	~	Przy następnej planowej próbie	połączei	nia	~
Zapisz dla obecnego rejestratora Zapisz dla moich rejestratorów					

Rys. 35. Ustawienia częstotliwości wykonywania pomiarów i wysyłki danych

- Po przejściu do zakładki możliwe jest dostosowanie ustawień dla sytuacji gdy *wszystkie parametry są w normie* oraz *gdy jeden z parametrów zostanie przekroczony.* Możliwe jest dokonanie następujących zmian:
 - częstotliwości wykonywania pomiarów.
 - Częstotliwość wysyłania danych.
 - Ponowna wysyłka danych po nieudanej próbie połączenia.

✓ Opcje ustawień dla *wszystkich parametrów w normie* oraz *gdy jeden z parametrów zostanie przekroczony* są jednakowe. Wszystkie powyższe parametry ustawia się poprzez opcje z rozwijanej listy. Zostało to przedstawione na rysunkach poniżej:

Częstotliwość pomiarów i nadawania

Gdy wszystkie parametry w normie

Częstotliwość wykonywania pomiarów	
5 min	~
1 min	
2 min	
3 min	
5 min	
10 min	
15 min	
30 min	
1 godz	
2 godz	
3 godz	
4 godz	
6 godz	
8 godz	
12 godz	
24 godz	

Rys. 36. Ustawienia częstotliwości wykonania pomiarów

Częstotliwość pomiarów i nadawania

Gdy wszystkie parametry w normie

Częstotliwość wykonywania pomiarów	
5 min	~
Częstotliwość wysyłania danych	
1 godz	~
Ponowna wysyłka danych po nieudanej próbie połączenia	
Przy następnej planowej próbie połączenia	~
Przy następnej planowej próbie połączenia Podczas kolejnego pomiaru Łącz do skutku	

Rys. 37. Ustawienia wysyłki danych po nieudanej próbie połączenia

 Kolejne ustawienia, które użytkownik ma możliwość zmienić w dotyczą progów parametrów zmieniających częstotliwość pomiarów i przesyłania danych:

Progi parametrów zmieniających częstotliwości pomiarów i przesyłania danych

Kanał	Wartość progowa		Operator porównania	Powiadomienia
Dodaj nowy	oróg dla wybranego parametru			
Kanał				
Poziom wo	dy	~		
Wartość prog	owa			
0		cm		
Operator por	ównania			
mniejszy lu	b równy	~		
Powiadomi	enia SMS			
Powiadomi	enia e-mail			
Dodaj				

 Ustawień progów dla wybranych parametrów dokonuje się poprzez wybór parametru z rozwijanej listy (*kanał*), wpisanie *wartości progowej* dla wybranego parametru oraz wybór *operatora porównania* dla danej wartości progowej:

an	lał
P	Poziom wody 🗸
F	Poziom wody
F	Prędkość
F	Przepływ
F	Przepływ
L	.icznik przepływu
F	Poziom osadu
F	Pole przekroju czynnego
k	Krzywa prędkości przepływu
k	Krzywa przepływu
k	Kąt radaru prędkości
F	Próg czułości radaru prędkości
F	Poziom wzmocnienia sygnału radaru prędkości
C	Zas pracy radaru poziomu
C	Zzas pracy radaru prędkości
C	Odległość od radaru poziomu do powierzchni wody
۷	Vzględna amplituda echa radaru poziomu
J	akość sygnału radaru poziomu
k	(ody diagnostyczne radaru poziomu
Т	Femperatura z radaru poziomu

Rys. 39. Wybór kanału.

- Operator porównania wybierany jest spośród dwóch opcji z rozwijanej listy:
 - Mniejszy lub równy.
 - Większy lub równy.
- Dodatkową opcją jest możliwość przypisania numeru telefonu, na który będą wysyłane powiadomienia SMS.

Lista numerów telefonów, na które zostaną wysłane powiadomienia SMS

Lp.	Numer	telefonu

+ 48600123456

Rys. 40. Ustawienie numeru telefonu.

5. Analiza danych pomiarowych

Dane pomiarowe z czujników podłączonych do Rejestratora przesyłane są za pomocą sieci GSM i mogą być odczytane w dedykowanym serwerze dostępnym online. Transmisja danych wykonywana jest z częstotliwością zdefiniowaną przez użytkownika.

- ✓ W celu wizualizacji lub eksportu danych pomiarowych z serwera należy zalogować się do swojego konta na stronie: <u>https://system.pmecology.com</u>
- Po zalogowaniu do systemu, należy rozwinąć zakładkę na górze strony *Analiza danych* i wybrać z listy nazwę Swojej Stacji.
- Wyświetlany na wykresie okres czasu może być zmieniany pomiędzy zakresami ostatniego Dnia, Tygodnia, Miesiąca lub Roku. Wykresy mogą być powiększane, a zakresy dat zawężane, tak aby można było dowolnie zapoznawać się z danymi pomiarowymi. Ta opcja może być wykorzystywana w sytuacjach kiedy trzeba szybko odnaleźć wybrany dzień, godzinę oraz minutę pomiaru. Odpowiedni zakres czasu można także wybrać za pomocą zaznaczenia określonego zakresu dat znajdującego się pod danym wykresem.
- ✓ W powiększonym widoku wybranego wykresu istnieje możliwość zapisania danych jako plik CSV, który następnie można otworzyć w arkuszu kalkulacyjnym, np. Microsoft Excel. Aby utworzyć plik CSV, należy nacisnąć *Eksportuj CSV*.

Rys. 41. Analiza danych - przegląd informacji

Przegląd informacji	wody	🐮 Eksport danych		• Ustawieni
		Poziom wody (m)		
		MMMM	MAMMMMM	4
	A	Ann . L.	· · · · W	where where
m. A	Amerikan			
w. hur mur				
04:00 05:00	05:00 07:00 08	00 09:00 10:00	11:00 12:00	13:00 14:00 15:0
04:00 05:00	05:00 07:00 08	00 09:00 10:00 	11:00 12:00	13:00 14:00 15:0 / 05:00 Highelium.co
04:00 05:00	06:00 07:00 08: 00 Wybrany zakres	00 09:00 10:00 16:00	11:00 12:00	13:00 14:00 15:0 / 05:00 Highchum.co

Rys. 42. Analiza danych - powiększenie wykresu

Uwaga!

Po zalogowaniu możliwe jest bezpośrednie przełączanie pomiędzy zakładkami *Ustawień kanałów* i *Analizy danych*. W tym celu należy nacisnąć odpowiednio okienko *Ustawienia* lub *Analiza danych*:

PM Ecology	PL		LOGIN 👻				
Urządzenia Analiza danych Obsługa stacji Zarządzanie kryzysowe							
NAZWA STACJI Ustawienia Przegląd informacji 네 Poziom wody 네 Porównaj 안 Eksport danych							
ZPM Ecology	PL		Login –				
Urządzenia Analiza danych Obsługa stacji Zarządzanie kryzysowe							
NAZWA STACJI			🔟 Analiza danych				
Parametry pracy 🌣 Ustawienia kanałów 🌣 Ustawienia rejestrowania 🌣 Ust	tawienia ogó	lne 🎓 Udostępniar	nie				

Rys. 43. Przegląd możliwości systemu

- Aby wybrać odpowiedni kanał oraz zakres czasu, którego ma dotyczyć zapisany plik, należy wybrać zakładkę
 Eksport Danych. Dostępna jest dodatkowa opcja wyboru pomiędzy zapisaniem danych przeliczonych lub surowych danych pomiarowych.
- Aby zapisać dane, należy nacisnąć *Eksportuj*. Plik CSV zostanie automatycznie zapisany na komputerze.

Uwaga!

System online pozwala na zapisywanie danych w formie pliku CSV z okresu maksymalnie jednego miesiąca. W celu pobrania danych z dłuższego okresu, należy powtórzyć powyższą procedurę kilkukrotnie.

ZPM Ecology					PL	EN	LOGIN	-
Urządzenia •	Analiza danych	Obsługa stacji	کے Zarządzanie kryzysowe ح					
NAZWA STACJI							awienia	
📰 Przegląd informacji 🔟 Poziom wody 🔟 Porównaj 🖻 Eksport danych								
Eksport danych								
Maksymalny możliwy zakres, dla którego można jednorazowo pobrać dane w pliku CSV wynosi 1 miesiąc. Wybierz właściwy zakres czasu.								
	•	Dane prze	lic: 🔻 Od	誧		Do	Ξ E	csportuj
Rys. 44. Ekspo	rt danych							

PM Ecology Sp. z o.o.

Kielnieńska 136 80-299 Gdańsk

info@pmecology.com

+48 58 500 80 07

www.pmecology.com